Aufgabentypen
Zur Etablierung einer lernförderlichen Aufgabenkultur sollten verschiedene Aufgabentypen angewendet werden. Man kann hierbei zwischen differenzierenden, prozessorientierten und Diagnoseaufgaben unterscheiden. [1]
Relevanz
Die Relevanz zur Weiterentwicklung der Aufgabenkultur lässt sich in empirischen Untersuchungen der letzten Jahre wiederfinden. Gemeinsame Ursachen für auftretende Phänomene ist auf eine unzureichend ausgeprägte Aufgabenkultur im Mathematikunterricht deutscher Schulen zurückzuführen.
Exemplarische Beispiele werden im Folgenden genannt:
- Lernende aus Deutschland weisen in der PISA-Studie 2003 deutlich höhere Werte im Bereich der Problemlösefähigkeiten im Vergleich zu der mathematischen Kompetenz auf. Diesen Befund weisen nur sehr wenige Staaten im internationalen Vergleich auf. Dieser Befund kann dahingehend interpretiert werden, dass das kognitive Potenzial deutscher Schülerinnen und Schüler weniger erfolgreich in mathematische Kompetenz umgesetzt wird. [3]
- Die TIMSS-Studie weist auf, dass im Mathematikunterricht an deutschen Schule komplexe Aufgaben am wenigsten gestellt werden, im Vergleich zu den USA und Japan. [4]
- Inhaltliches mathematisches Denken von Lernenden der Klassenstufen 5 und 6 werden durch die Anwendung erlernter kalkülhafter Regeln ersetzt. [5]
Die genannten empirischen Phänomene weisen keineswegs eine geringere Leistungsfähigkeit deutscher Schülerinnen und Schüler im internationalen Vergleich auf. Es besteht allerdings grundlegender Bedarf diese Leistungsfähigkeit im Mathematikunterricht abzurufen. Dabei sollte unter anderem die Entwicklung eine lernförderlichen Aufgabenkultur eine zentrale Rolle spielen.
Im Folgenden werden Möglichkeiten zur Umsetzung dieses Ziels dargestellt.
Aufgabentypen nach Bruder
Diese Aufgabentypen bilden wesentliche Lerntätigkeiten ab, ermöglichen Vernetzung, bieten individuelle Freiräume und erfordern methodische Variabilität des Unterrichts. Aktivieren kognitiv. [7]
Differenzierende Aufgaben
Differenzierende Aufgaben berücksichtigen in besonderem Maße unterschiedliche Niveaustufen der Lernenden, sodass Aufgaben je nach individuellem Vorwissen und Leistungsstand bearbeitet werden können. Eckpfeiler differenziernden Unterrichts sind:
- Sicherung des Ausgangsniveaus (zum Beispiel durch vermischte Kopfübungen)
- Ziel- und Inhaltstransparenz (zum Beispiel durch Lernprotokolle)
- Förderung der Selbstregulation (zum Beispiel durch Checklisten zur Klausurvorbereitung)
- kognitive Aktivierung (zum Beispiel durch angepasste Anforderungen an verschiedene Lernvoraussetzungen) [8]
Im Folgenden werden verschieden Beispiele für differenzierende aufgabenbezogene Methoden vorgestellt. Grundlegende Ansätze differenzierenden Unterrichts erhalten Sie auf der Seite: Binnendifferenzierung
Optionale Teilaufgaben
Zusatzaufgaben werden als differenzierende und optionale Aufgaben angeboten. Die Lernenden entscheiden individuell und je nach Leistungsstand, ob sie die Bearbeitung dieser Aufgaben für den eigenen Lernprozess als sinnvoll erachten.
Die Bearbeitung dieser Aufgaben sollte eine angemessene Bewertung und Wertschätzung zugesprochen werden, da diese sonst schnell als Beschäftigungsvorwand von den Lernenden interpretiert werden.
Blütenaufgaben
Blütenaufgaben sind Anforderungsgestufte Aufgaben, bestehend aus mehreren Teilaufgaben mit zunehmendem Anspruchsniveau zum selben Themenkontext. Blütenaufgaben beginnen mit einer geschlossenen Einstiegsaufgabe, die den Schülerinnen und Schüler zugänglich ist. Es folgen weitere offene Teilaufgaben mit gestuften Anforderungen. Dieser Aufgabentyp ermöglicht, dass mit einer einzigen Aufgabe Grundanforderungen gestellt und weiterführende Anforderungen geöffnet werden können. [11] [12]
Aufgabensets
Ein Aufgabenset beinhaltet circa zehn schwierigkeitsgestufte Aufgaben zu einem Thema aus dem (inner-)mathematischen Kontext, die gezielt für eine einzelne Übungsphase zusammengestellt werden. Dabei bearbeiten die einzelne Schülerin, der einzelne Schüler nicht alle zehn Aufgaben, sondern nur eine bestimmt vorgegebene Anzahl an Aufgaben. Die ersten Aufgaben bewegen sich im Anforderungsbereich I und beinhalten hauptsächlich Grundaufgaben und Aufgabenumkehrungen. Die nächsten Aufgaben sind dem Anforderungsbereich II zuzuordnen und beinhalten Anwendungen oder erste Verallgmeinerungen. Die letzten Aufgaben sind dem dritten Anforderungsbereich zuzuordnen. Hierbei werden vertiefende Transferaufgaben behandelt. Die Zusammenstellung der Inhalte und die Wahlmöglichkeiten gewährleisten, dass die Lernenden entsprechend ihres Festigungsbedarfs und ihres Leistungsvermögens angemessen gefördert und gefordert werden. [13]
Prozessorientierte Aufgaben
Prozessorientierte Aufgaben konzentrieren sich auf die anzuwendenden Prozesse des Problemlösens oder Modellierens. Die Kenntnisse von mathematischen Inhalten rückt hierbei eher in den Hintergrund.
Offene Aufgaben
Strategische Aufgaben
Diagnoseaufgaben
Diagnoseaufgaben sind ein mögliches Werkzeug Erkenntnisse über den aktuellen Wissensstand und vorhandene mathematische Problemlösefähigkeiten der Lernenden in Erfahrung zu bringen. Sie können außerdem Hinweise darauf geben worin genau Kenntnisdefizite beim Verständnis mathematischer Sachverhalte vorhanden sind. Dies ist insbesondere für die Bereitstellung individueller Förderangebote von großer Bedeutung.
Diagnoseaufgaben sollten bestimmte Bedingungen erfüllen:
- Relation zwischen entstehenden Schülerlösungen und systematischen Fehlerstrategien
- Lösungswege sollen begründet und dargelegt werden
- von Leistungsbewertung entkoppelt
- langfristig angelegte, hinsichtlich bestimmter Variablen, Diagnose
- Implementierung einer Selbsteinschätzung oder Reflexion
Weiterführende Hinweise
Einzelnachweise
- ↑ Leuders, T. (2018): Mathematik Didaktik. Praxishandbuch für die Sekundarstufe I und II. Berlin: Cornselsen Verlag Scripor GmbH&Co. KG. S. 300ff. ISBN 3589216956
- ↑ Karikatur von Michael Hüter aufgerufen unter: https://docplayer.org/docs-images/66/55548085/images/10-1.jpg Stand: 01.09.2020
- ↑ PISA 2003, Ergebnisse des zweiten Internationalen Vergleichs, Zusammenfassung unter: http://archiv.ipn.uni-kiel.de/PISA/PISA2003_E_Zusammenfassung.pdf, S.18
- ↑ vgl. Neubrand, J. (2002): Eine Klassifikation mathematischer Aufgaben zur Analyse von Unterrichtssituationen. Selbsttätiges Arbeiten in Schülerarbeitsphasen in den Stunden der TIMSS-Video-Studie. Hildesheim/Berlin: Franzbecker. ISBN 3881203443
- ↑ Pekrun, R.; Götz, T.; vom Hofe, R.; Blum, W.; Jullien, S.; Zirngibl, A.; Kleine, M.; Wartha, S.; Jordan, A. (2004): Emotionen und Leistung im Fach Mathematik: Ziele und erste Befunde aus dem „Projekt zur Analyse der Leistungsentwicklung in Mathematik“ (PALMA), Münster: Waxmann, S.359, ISBN 3830913990
- ↑ Bruder, R.(2000): Eine akzentuierte Aufgabenauswahl und Vermitteln heuristischer Erfahrung - Wege zu einem anspruchsvollen Mathematikunterricht für alle.-In: Flade/Herget (Hrsg.): Mathematik lehren und lernen nach TIMSS - Anregungen für die Sekundarstufen.- Berlin: Volk und Wissen. Aufgerufen auf: https://slideplayer.org/slide/11869083/ Stand: 02.09.2020
- ↑ Bruder, R.(2000): Eine akzentuierte Aufgabenauswahl und Vermitteln heuristischer Erfahrung - Wege zu einem anspruchsvollen Mathematikunterricht für alle.-In: Flade/Herget (Hrsg.): Mathematik lehren und lernen nach TIMSS - Anregungen für die Sekundarstufen.- Berlin: Volk und Wissen
- ↑ Roder, U. & Bruder, R. (2015): MAKOS – Ein Projekt zur Umsetzung der Abiturstandards Mathematik in Hessen. In G. Kaiser & H.-W. Henn (Hrsg.), Werner Blum und seine Beiträge zum Modellieren. Festschrift zum 70. Geburtstag. Wiesbaden: Springer Spektrum Verlag. S. 284
- ↑ Aufgerufen unter: https://unterrichten.zum.de/images/8/8a/Förderaufgabe.png Stand: 01.09.2020
- ↑ Storz, R. (2014): Mathematik differenziert und individualisiert unterrichten. Hallbergmoos: Aulis Verlag. S. 143 ISBN 9783761429266
- ↑ Zeitler, H. (2013): In der Vielfalt liegt die Stärke - Handreichung zur Individualisierung des Lernens für die gesellschaftswissenschaftlichen Fächer. Berlin: Ruksaldruck GmbH, S.17f ISBN 9783944541020
- ↑ Storz, R. (2014): Mathematik differenziert und individualisiert unterrichten. Hallbergmoos: Aulis Verlag. S. 142ff ISBN 9783761429266
- ↑ Roder, U. & Bruder, R. (2015): MAKOS – Ein Projekt zur Umsetzung der Abiturstandards Mathematik in Hessen. In G. Kaiser & H.-W. Henn (Hrsg.), Werner Blum und seine Beiträge zum Modellieren. Festschrift zum 70. Geburtstag. Wiesbaden: Springer Spektrum Verlag. S. 290. ISBN 9783658095314
- ↑ Blum, W. & Leiß, D. (2005): Modellieren im Unterricht mit der “Tanken”-Aufgabe, In: Mathematik lehren, H. 128, Feb. 2005, S. 19. Hannover: Friedrich Verlag