Aufgabengestaltung: Unterschied zwischen den Versionen

Aus digiteach
Zur Navigation springen Zur Suche springen
Zeile 21: Zeile 21:
*Die Aufgaben haben eine klare fachliche Rahmung (von der Lehrperson vorab didaktisch vorgenommen) und eine reichhaltige mathematische Substanz. <ref> Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.</ref>
*Die Aufgaben haben eine klare fachliche Rahmung (von der Lehrperson vorab didaktisch vorgenommen) und eine reichhaltige mathematische Substanz. <ref> Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.</ref>
*Die Aufgaben sind hinreichend flexibel und variabel. <ref name="Kr12"> Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.</ref>
*Die Aufgaben sind hinreichend flexibel und variabel. <ref name="Kr12"> Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.</ref>
*Sie sprechen ein breites Spektrum inhaltlicher wie allgemeiner mathematischer Kompetenzen an und ermöglichen deren integrative Förderung. <ref name="Kr12" \>
*Sie sprechen ein breites Spektrum inhaltlicher wie allgemeiner mathematischer Kompetenzen an und ermöglichen deren integrative Förderung. <ref name="Kr12"> <\ref>


====== Zu prüfende hinreichende Merkmale======
====== Zu prüfende hinreichende Merkmale======
Zeile 28: Zeile 28:
*Das Medium beinhaltet realistische und authentische Aufgaben, die ein entdeckendes Lernen anregen.  [BS19, S.126] -> Quelle fehlt im Citavi
*Das Medium beinhaltet realistische und authentische Aufgaben, die ein entdeckendes Lernen anregen.  [BS19, S.126] -> Quelle fehlt im Citavi
*Die Aufgabenstellungen sind offen gestaltet, um eine gute Differenzierung gewährleisten zu können. <ref> Roth, J.: Digitale Werkzeuge im Mathematikunterricht – Konzepte, empirische Ergebnisse und Desiderate, S.240. In(Büchter, A.; Glade, M.; Herold-Blasius, R. Hrsg.): Vielfältige Zugänge zum Mathematikunterricht. Konzepte und Beispiele aus Forschung und Praxis, 2019.S. 233–249. ISBN 3658242922 </ref>  [BM94, S.183] -> Quelle fehlt in Citavi
*Die Aufgabenstellungen sind offen gestaltet, um eine gute Differenzierung gewährleisten zu können. <ref> Roth, J.: Digitale Werkzeuge im Mathematikunterricht – Konzepte, empirische Ergebnisse und Desiderate, S.240. In(Büchter, A.; Glade, M.; Herold-Blasius, R. Hrsg.): Vielfältige Zugänge zum Mathematikunterricht. Konzepte und Beispiele aus Forschung und Praxis, 2019.S. 233–249. ISBN 3658242922 </ref>  [BM94, S.183] -> Quelle fehlt in Citavi
*Sie fordern und fördern Geduld, Ausdauer, Konzentration, Anstrengungsbereitschaft und ein allgemeines Begründungsbedürfnis. <ref name="Kr12" \>
*Sie fordern und fördern Geduld, Ausdauer, Konzentration, Anstrengungsbereitschaft und ein allgemeines Begründungsbedürfnis. <ref name="Kr12"><\ref>
* Die Aufgaben sind hinreichend komplex. <ref name="Kr12" \>
* Die Aufgaben sind hinreichend komplex. <ref name="Kr12"><\ref>


===Graduierung===
===Graduierung===

Version vom 5. August 2020, 08:29 Uhr

Steckbrief
Name Aufgabengestaltung
Dimension fachlich
Notwendigkeit für das Szenario obligatorisch
Messbarkeit absolut

Das Kriterium Aufgabengestaltung analysiert die gestellten Aufgaben innerhalb eines Mediums. Zu den 10 Merkmalen guten Unterrichts zählt nach Helmke und Schrader auch die inhaltliche Klarheit. Diese kann unter anderem durch verständliche Aufgaben erreicht werden. Verständliche Aufgaben sind nur zu erreichen, wenn das Ziel, der Inhalt und die Methode innerhalb des Mediums aufeinander abgestimmt, also adaptiv, sind [1]. Daher haben Aufgaben auch innerhalb eines Mediums einen besonders hohen Stellenwert.
Bei der Umsetzung einer lernförderlichen Aufgabenkultur sollten verschiedene Aufgabentypen berücksichtigt
werden. [2]

Kriterium

Die Aufgaben innerhalb des Mediums sind sinnstiftend und förderlich gestaltet.

Beschreibung

Zu prüfende notwendige Merkmale
  • Es muss geklärt werden, welche Lernvoraussetzungen für die Zielerreichung gegeben sein müssen und ob die SuS diese mitbringen [3], [4]
  • Die Aufgaben verfolgen klar definierte Ziele. [5]
  • Die Aufgaben sind verständlich formuliert [6]
  • Der Zusammenhang von Ziel-, Inhalts- und Methodenwahl ist in sich stimmig.
  • Die Aufgaben haben eine klare fachliche Rahmung (von der Lehrperson vorab didaktisch vorgenommen) und eine reichhaltige mathematische Substanz. [7]
  • Die Aufgaben sind hinreichend flexibel und variabel. [8]
  • Sie sprechen ein breites Spektrum inhaltlicher wie allgemeiner mathematischer Kompetenzen an und ermöglichen deren integrative Förderung. Referenzfehler: Für ein <ref>-Tag fehlt ein schließendes </ref>-Tag.
  • Das Medium beinhaltet realistische und authentische Aufgaben, die ein entdeckendes Lernen anregen. [BS19, S.126] -> Quelle fehlt im Citavi
  • Die Aufgabenstellungen sind offen gestaltet, um eine gute Differenzierung gewährleisten zu können. [9] [BM94, S.183] -> Quelle fehlt in Citavi
  • Sie fordern und fördern Geduld, Ausdauer, Konzentration, Anstrengungsbereitschaft und ein allgemeines Begründungsbedürfnis. <ref name="Kr12"><\ref>
  • Die Aufgaben sind hinreichend komplex. <ref name="Kr12"><\ref>

Graduierung

Stufe 0
Beschreibung
Stufe 1
Beschreibung
Stufe 2
Beschreibung
Stufe 3
Beschreibung

Einzelnachweise

  1. Meyer, H.: Was ist guter Unterricht?, S.55. Cornelsen, Berlin, 2017. ISBN 9783589220472.
  2. Leuders, T. (2018): Mathematik Didaktik. Praxishandbuch für die Sekundarstufe I und II. Berlin: Cornselsen Verlag Scripor GmbH&Co. KG. S. 300. ISBN 3589216956
  3. Jank, W.; Meyer, H.: Didaktische Modelle, S.73. Cornelsen, Berlin, 2014. ISBN 978-3-589-21566-9.
  4. Meyer, H.: Was ist guter Unterricht?, S.55. Cornelsen, Berlin, 2017. ISBN 9783589220472.
  5. Jank, W.; Meyer, H.: Didaktische Modelle, S.73. Cornelsen, Berlin, 2014. ISBN 978-3-589-21566-9.
  6. Meyer, H.: Was ist guter Unterricht?, S.28f. Cornelsen, Berlin, 2017. ISBN 9783589220472.
  7. Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.
  8. Krauthausen, G.: Digitale Medien im Mathematikunterricht der Grundschule, S.45. Spektrum Akademischer Verlag,Berlin, 2012. ISBN 9783827422767.
  9. Roth, J.: Digitale Werkzeuge im Mathematikunterricht – Konzepte, empirische Ergebnisse und Desiderate, S.240. In(Büchter, A.; Glade, M.; Herold-Blasius, R. Hrsg.): Vielfältige Zugänge zum Mathematikunterricht. Konzepte und Beispiele aus Forschung und Praxis, 2019.S. 233–249. ISBN 3658242922