Mittelsenkrechte
Die Mittelsenkrechte ist eine Gerade, die senkrecht zu einer Strecke (oder Geraden) und durch einen Mittelpunkt M dieser Strecke (oder Geraden) verläuft. Sie ist eine der besonderen Linien im Dreieck.
Definition
Es ist eine Strecke AB und ihr Mittelpunkt M gegeben. Die Mittelsenkrechte ist eine Gerade, die durch den Punkt M verläuft und senkrecht zur Strecke steht.
Eigenschaften
Jeder Punkt P, der auf der Mittelsenkrechten liegt, ist gleichweit entfernt von den Eckpunkten A und B der Strecke. Anders herum gilt: Jeder Punkt Q, der nicht auf der Mittelsenkrechten liegt, hat eine unterschiedliche Entfernung zu den Eckpunkten A und B.
Mittelsenkrechte im Dreieck
Alle drei Mittelsenkrechten eines Dreiecks schneiden sich in genau einem Punkt S. Dieser Punkt ist der Mittelpunkt des Umkreises.
Konstruktion
Mit einem Geodreieck oder Winkelmesser
Um die Mittelsenkrechte zu konstruieren, wird im 90° Winkel zur Strecke \overline{AB} eine Gerade durch den Punkt M gezeichnet.
Mit dem Zirkel
Um die Mittelsenkrechte mit dem Zirkel zu zeichnen, nutzt man die Eigenschaft, dass alle Punkte der Mittelsenkrechten gleichweit entfernt zu den Eckpunkten liegen. Man spannt im Zirkel einen Radius ein, der länger als die Hälfte der Strecke ist. Nun zeichnet man jeweils einen Kreis um die Eckpunkte A und B. Es ergeben sich 2 Schnittpunkte. Die Gerade durch die beiden Schnittpunkte ist die Mittelsenkrechte. Um genau zu zeichnen kann man auch mehrere Kreise jeweils um die Eckpunkte A und B zeichnen, sodass sich mehrere Schnittpunkte ergeben. Wichtig dabei ist, dass der Radius stets größer als die Hälfte der Strecke \overline{AB} ist.