Kongruenz: Unterschied zwischen den Versionen

Aus igb
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:


==Die Kongruenzsätze für Dreiecke==
==Die Kongruenzsätze für Dreiecke==
Es gibt 4 Kongruenzsätze für [[Dreiecke]]. Sie sind nicht nur wichtig, um zu überprüfen, ob Kongruenz vorliegt. Sie spielen auch eine bedeutende Rolle für das [[Konstruieren]] von [[Dreiecken]].
Ein Dreieck, das bei der [[Spiegelung]] oder [[Drehung]] eines anderen Dreiecks entsteht, ist immer kongruent zum Ausgangsdreieck. Doch nicht immer weiß man, ob gedreht oder gespiegelt wurde. Um dann trotzdem prüfen zu können, , ob Kongruenz vorliegt, benutzt man die Kongruenzsätze für Dreiecke. Es gibt 4 davon. Sie spielen auch eine bedeutende Rolle für das [[Konstruieren]] von [[Dreiecken]].


[[Datei:Kongruenz.png]]
[[Datei:Kongruenz.png]]

Version vom 30. Juli 2020, 15:45 Uhr

Als Kongruenz bezeichnet man die Deckungsgleichheit zweier Figuren. Zueinander kongruente Figuren haben also denselben Flächeninhalt. Besonders wichtig ist diese Eigenschaft bei Dreiecken. Denn man kann überprüfen, ob zwei Dreiecke zueinander kongruent sind, wenn man bestimmte Eigenschaften von ihnen kennt. Das drücken die sogenannten Kongruenzsätze aus. Sind zwei Dreiecke kongruent, schreibt man Die Kongruenz ist ein Spezialfall der Ähnlichkeit.

Die Kongruenzsätze für Dreiecke

Ein Dreieck, das bei der Spiegelung oder Drehung eines anderen Dreiecks entsteht, ist immer kongruent zum Ausgangsdreieck. Doch nicht immer weiß man, ob gedreht oder gespiegelt wurde. Um dann trotzdem prüfen zu können, , ob Kongruenz vorliegt, benutzt man die Kongruenzsätze für Dreiecke. Es gibt 4 davon. Sie spielen auch eine bedeutende Rolle für das Konstruieren von Dreiecken.

Kongruenzsatz SSS

Zwei Dreiecke sind zueinander kongruent, wenn sie in der Länge aller drei Seiten übereinstimmen.

Kongruenzsatz SWS

Zwei Dreiecke sind zueinander kongruent, wenn sie in der Länge zweier Seiten und im von diesen eingeschlossenen Winkel übereinstimmen.

Kongruenzsatz WSW

Zwei Dreiecke sind zueinander kongruent, wenn sie in einer Seite und den beiden anliegenden Winkeln übereinstimmen.

Kongruenzsatz SSW

Zwei Dreiecke sind zueinander kongruent, wenn sie in zwei Seiten und dem der größeren Seite gegenüberliegenden Winkel übereinstimmen.


Übungsaufgaben

1. Begründe, warum es keinen Kongruenzsatz WWW für Dreiecke gibt. 2.