Umkehraufgaben: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
(Umkehraufgaben helfen dir dabei Lösungen für Aufgaben leichter zu finden oder deine Ergebnisse zu kontrollieren.) |
||
Zeile 1: | Zeile 1: | ||
Umkehraufgaben sind Additionsaufgaben (Plusaufgaben) die in Subtraktionsaufgaben (Minusaufgaben) umgewandelt werden, oder Subtraktionsaufgaben die in Additionsaufgaben umgewandelt werden. | Umkehraufgaben sind Additionsaufgaben (Plusaufgaben) die in Subtraktionsaufgaben (Minusaufgaben) umgewandelt werden, oder Subtraktionsaufgaben die in Additionsaufgaben umgewandelt werden. | ||
Es gibt auch Umkehraufgaben bei denen eine Multiplikationsaufgabe (Malaufgabe) in eine Divisionsaufgabe (Geteilt-durch-Aufgabe) oder eine Divisionsaufgabe in eine Multiplikationsaufgabe umgewandelt wird. Darüber kannst etwas du bei [[Umkehraufgaben mit Multiplikation und Division]] nachlesen. | |||
Zeile 12: | Zeile 14: | ||
'''Beispiel:''' | '''Beispiel:''' | ||
Aufgabe: 28 - __ = 12 | |||
Umkehraufgabe: 12 + __ = 28 | |||
Lösung: 12 + 16 = 28, also: 28 - 16 = 12 | |||
Sie können aber auch genutzt werden, um eine gefundene Lösung auf Rechenfehler zu überprüfen. | Sie können aber auch genutzt werden, um eine gefundene Lösung auf Rechenfehler zu überprüfen. | ||
Zeile 17: | Zeile 26: | ||
'''Beispiel:''' | '''Beispiel:''' | ||
Aufgabe: | Aufgabe: 15 + 8 = 23 | ||
Umkehraufgabe: 23 - 8 = 15 | Umkehraufgabe: 23 - 8 = 15 | ||
Also ist die Aufgabe richtig. | |||
Die Zahlen, die dabei verwendet werden bleiben gleich. | Die Zahlen, die dabei verwendet werden bleiben gleich. | ||
''Achtung:'' Umkehraufgaben | ''Achtung:'' Umkehraufgaben sind keine [[Tauschaufgaben]]. Denn bei Tauschaufgaben bleibt das Rechenzeichen gleich und nur die Zahlen vor dem Ist-gleich-Zeichen ("=") werden getauscht. | ||
== Beispielaufgaben == | |||
[[Datei:Beispielaufgaben.jpg]] | |||
== Übungsaufgaben == | |||
Versuche nun selbst die Umkehraufgabe zu finden: | |||
[[Datei:1.Umkehraufgaben.jpg]] | |||
Errechne jetzt mit der Umkehraufgabe die Lösung. | |||
[[Datei:Rechnen.jpg]] | |||
Lösungen: | |||
16 - 3 = 13 | 32 - 20 = 12 | 20 - 5 = 15 | |||
13 + 3 = 16 | 12 + 20 = 32 | 15 + 5 = 20 | |||
29 + 6 = 35 | 18 + 3 = 21 | 15 + 19 = 34 | |||
35 - 6 = 29 | 21 - 3 = 18 | 34 - 19 = 15 | |||
== Einzelnachweise == | |||
https://www.gut-erklaert.de/mathematik/umkehraufgaben-klasse-1-2.html |
Version vom 23. Februar 2021, 16:44 Uhr
Umkehraufgaben sind Additionsaufgaben (Plusaufgaben) die in Subtraktionsaufgaben (Minusaufgaben) umgewandelt werden, oder Subtraktionsaufgaben die in Additionsaufgaben umgewandelt werden.
Es gibt auch Umkehraufgaben bei denen eine Multiplikationsaufgabe (Malaufgabe) in eine Divisionsaufgabe (Geteilt-durch-Aufgabe) oder eine Divisionsaufgabe in eine Multiplikationsaufgabe umgewandelt wird. Darüber kannst etwas du bei Umkehraufgaben mit Multiplikation und Division nachlesen.
Anwendung
Um Umkehraufgaben lösen zu können, musst man die grundlegenden Rechenarten Subtraktion und Addition beherrschen.
Umkehraufgaben werden verwendet, um Lösungen für eine Aufgabe leichter zu finden.
Beispiel:
Aufgabe: 28 - __ = 12
Umkehraufgabe: 12 + __ = 28
Lösung: 12 + 16 = 28, also: 28 - 16 = 12
Sie können aber auch genutzt werden, um eine gefundene Lösung auf Rechenfehler zu überprüfen.
Beispiel:
Aufgabe: 15 + 8 = 23
Umkehraufgabe: 23 - 8 = 15
Also ist die Aufgabe richtig.
Die Zahlen, die dabei verwendet werden bleiben gleich.
Achtung: Umkehraufgaben sind keine Tauschaufgaben. Denn bei Tauschaufgaben bleibt das Rechenzeichen gleich und nur die Zahlen vor dem Ist-gleich-Zeichen ("=") werden getauscht.
Beispielaufgaben
Übungsaufgaben
Versuche nun selbst die Umkehraufgabe zu finden:
Errechne jetzt mit der Umkehraufgabe die Lösung.
Lösungen: 16 - 3 = 13 | 32 - 20 = 12 | 20 - 5 = 15 13 + 3 = 16 | 12 + 20 = 32 | 15 + 5 = 20
29 + 6 = 35 | 18 + 3 = 21 | 15 + 19 = 34 35 - 6 = 29 | 21 - 3 = 18 | 34 - 19 = 15
Einzelnachweise
https://www.gut-erklaert.de/mathematik/umkehraufgaben-klasse-1-2.html