Seitenhalbierende
Die Seitenhalbierende ist eine Gerade, die durch einen der Eckpunkte des Dreiecks und den Mittelpunkt der gegenüberliegenden Seite verläuft. Sie gehört wie die Mittelsenkrechte, Höhe und Winkelhalbierende zu den besonderen Linien im Dreieck.
Definition
Eigenschaften
Seitenhalbierende sind schon seit Jahrhunderten Thema mathematischer Untersuchungen. Vor allem der italienische Mathematiker Giovanni Ceva forschte viel zu ihnen. Ebenso wie die Winkelhalbierenden und Höhen im Dreieck werden die Seitenhalbierenden daher als Cevanen bezeichnet.[1]
Bezeichnung der Seitenhalbierenden
Die Seitenhalbierenden werden entsprechend ihres Schnittpunktes mit einem Eckpunkt des Dreiecks bezeichnet. Für das allgemeine Dreieck ABC gilt also 𝑠𝑎, 𝑠𝑏 𝑢𝑛𝑑 𝑠𝑐. [2]
Teilung der Seiten
Für die Seiten des Dreiecks gelten außerdem die folgenden Verfältnisse 𝑎𝑏=𝑎𝑐=𝑎/2, 𝑏𝑎=𝑏𝑐=𝑏/2 𝑢𝑛𝑑 𝑐𝑎=𝑐𝑏=𝑐/2. [3]
Schnittpunkt der Seitenhalbierenden
Die Seitenhalbierenden schneiden sich in einem Schnittpunkt. Dieser wird auch als Schwerpunkt des Dreiecks mit dem Großbuchstaben G bezeichnet. Er unterteilt die Seitenhalbierenden im Verhältnis 2:1.[4]
Teilung des Dreiecksfläche
Die drei Seitenhalbierenden 𝑠𝑎, 𝑠𝑏 𝑢𝑛𝑑 𝑠𝑐 unterteilen die Fläche des Dreiecks ABC in sechs gleichgroße Flächen.
Konstruktion
Zur Konstruktion der Seitenhalbierenden mit Zirkel und Lineal ist es notwendig, ebenfalls Mittelsenkrechten als Hilfslinien konstruieren zu können.
- Schritt: Konstruiere die Mittelsenkrechte über einer Seite deiner Wahl.
- Schritt: Bezeichne den Schnittpunkt der Seite mit der Mittelsenkrechte mit einem Großbuchstaben deiner Wahl.
- Schritt: Verbinde den Schnittpunkt mit dem Eckpunkt des Dreiecks, der der Seite gegenüberliegt.
- Schritt: Wiederhole das Vorgehen für die verbleibenden Seiten.
- Schritt: Bezeichne den Schnittpunkt der Seitenhalbierenden mit G.
Quellen
- ↑ vgl. Alsina, C & Nelsen R.B. (2015): Perlen der Mathematik. Springer-Verlag Berlin Heidelberg. S.59.
- ↑ vgl. Alsina, C & Nelsen R.B. (2015): Perlen der Mathematik. Springer-Verlag Berlin Heidelberg. S.63.
- ↑ vgl. Alsina, C & Nelsen R.B. (2015): Perlen der Mathematik. Springer-Verlag Berlin Heidelberg. S.63.
- ↑ vgl. Zeuge, W.(2018): Nützliche und schöne Geometrie. Springer-Verlag Berlin Heidelberg. S.59.